Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387975

RESUMO

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Assuntos
Colletotrichum/fisiologia , DNA Intergênico , Introgressão Genética , Genoma de Planta , Interações Hospedeiro-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Doenças das Plantas , Duplicação Gênica , Magnoliopsida/genética , Magnoliopsida/microbiologia , Persea/genética , Persea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Front Microbiol ; 10: 3032, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993038

RESUMO

The most important bioinsecticide used worldwide is Bacillus thuringiensis and its hallmark is a rich variety of insecticidal Cry protein, many of which have been genetically engineered for expression in transgenic crops. Over the past 20 years, the discovery of other insecticidal proteins and metabolites synthesized by B. thuringiensis, including chitinases, antimicrobial peptides, vegetative insecticidal proteins (VIP), and siderophores, has expanded the applied value of this bacterium for use as an antibacterial, fungicidal, and nematicidal resource. These properties allow us to view B. thuringiensis not only as an entity for the production of a particular metabolite, but also as a multifaceted microbial factory. In particular, chitinases of B. thuringiensis are secreted enzymes that hydrolyze chitin, an abundant molecule in the biosphere, second only to cellulose. The observation that chitinases increase the insecticidal activity of Cry proteins has stimulated further study of these enzymes produced by B. thuringiensis. Here, we provide a review of a subset of our knowledge of B. thuringiensis chitinases as it relates to their phylogenetic relationships, regulation of expression, biotechnological potential for controlling entomopathogens, fungi, and nematodes, and their use in generating chitin-derived oligosaccharides (ChOGs) that possess antibacterial activities against a number of clinically significant bacterial pathogens. Recent advances in the structural organization of these enzymes are also discussed, as are our perspective for future studies.

3.
Braz J Microbiol ; 46(3): 929-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413080

RESUMO

Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.


Assuntos
Arabidopsis/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Brassica/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Sequência de Bases , Meios de Cultura , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Mutação/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética
4.
Braz. j. microbiol ; 46(3): 929-936, July-Sept. 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-755799

RESUMO

Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.

.


Assuntos
Arabidopsis/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Brassica/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Sequência de Bases , Meios de Cultura , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Mutação/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética
5.
Braz. j. microbiol ; 46(3): l9369-936, July-Sept. 2015. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469611

RESUMO

Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.


Assuntos
Arabidopsis/microbiologia , Brassica/microbiologia , Doenças das Plantas/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Elementos de DNA Transponíveis/genética , Folhas de Planta/microbiologia , Genes Bacterianos , Meios de Cultura , Mutação/genética , Regiões Promotoras Genéticas/genética , Sequência de Bases
6.
Microbiol Res ; 169(12): 948-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24880804

RESUMO

Bacteriocins synthesized by entomopathogenic Bacillus thuringiensis are gaining attention owing to their inhibitory effects against a wide variety of pathogenic bacteria. In the present study, we purified and characterized Tolworthcin 524, a bacteriocin synthesized by B. thuringiensis subsp. tolworthi, and compared it with other bacteriocins synthesized by B. thuringiensis. Tolworthcin 524 was separated and purified from the secretome of B. thuringiensis by fast protein liquid chromatography with a gel filtration column to obtain yields of 17% and a specific activity of ∼3600U/mgprotein. The purified product showed two peptides of ∼9 and 6kDa with antimicrobial activity in a gel-screening assay. The purified product was analyzed by two-dimensional electrophoresis and the resolved peptides of ∼9 and 6kDa with isoelectric points of ∼8 were sequenced. Partial sequences (METPVVQPR and DWTCWSCLVCAACS) were obtained suggesting that the ∼9 and 6kDa correspond to the prebacteriocin and mature Tolworthcin 524, respectively. Sequences showed high identity with Thurincin H and Thuricin 17 and had a conserved motif with other bacteriocins of B. thuringiensis. Based on sequence data, Tolworthcin 524 was classified in subclass II.2 (Thuricin-like peptides) of the Bacillus bacteriocin classification scheme. The larger peptide did not harbor a sequence suggestive of a signal peptide neither did it contain the double-glycine (GG) motif characteristic of the secretion leader recognized by the ABC transport system. Implications of these properties in Tolworthcin 524 secretion are discussed.


Assuntos
Bacillus thuringiensis/metabolismo , Bacteriocinas/química , Bacteriocinas/classificação , Sequência de Aminoácidos , Bacillus thuringiensis/química , Bacteriocinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Peptídeos/química
7.
Nature ; 498(7452): 94-8, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23665961

RESUMO

It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/genética , DNA Intergênico/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética , Sintenia/genética , Vitis/genética
8.
Science ; 326(5956): 1078, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19965420

RESUMO

Maize domestication (Zea mays ssp. mays L.) resulted in a wide diversity of native landraces that represent an invaluable source of genetic information for exploring natural variation and genome evolution. We sequenced de novo the approximately 2-gigabase genome of the Mexican landrace Palomero Toluqueño (Palomero) and compared its features to those of the modern inbred line B73. We revealed differences concordant with its ancient origin and identified chromosomal regions of low nucleotide variability that contain domestication genes involved in heavy-metal detoxification. Our results indicate that environmental changes were important selective forces acting on maize domestication.


Assuntos
Genes de Plantas , Genoma de Planta , Metais Pesados/metabolismo , Seleção Genética , Zea mays/genética , Zea mays/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Variação Genética , Metais Pesados/análise , Metais Pesados/toxicidade , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Solo/análise , Zea mays/crescimento & desenvolvimento
9.
J Bacteriol ; 189(7): 2834-43, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17237165

RESUMO

Pseudomonas syringae pv. phaseolicola is the causal agent of halo blight disease of beans (Phaseolus vulgaris L.), which is characterized by water-soaked lesions surrounded by a chlorotic halo resulting from the action of a non-host-specific toxin known as phaseolotoxin. This phytotoxin inhibits the enzyme ornithine carbamoyltransferase involved in arginine biosynthesis. Different evidence suggested that genes involved in phaseolotoxin production were clustered. Two genes had been previously identified in our laboratory within this cluster: argK, which is involved in the immunity of the bacterium to its own toxin, and amtA, which is involved in the synthesis of homoarginine. We sequenced the region around argK and amtA in P. syringae pv. phaseolicola NPS3121 to determine the limits of the putative phaseolotoxin gene cluster and to determine the transcriptional pattern of the genes comprising it. We report that the phaseolotoxin cluster (Pht cluster) is composed of 23 genes and is flanked by insertion sequences and transposases. The mutation of 14 of the genes within the cluster lead to a Tox(-) phenotype for 11 of them, while three mutants exhibited low levels of toxin production. The analysis of fusions of selected DNA fragments to uidA, Northern probing, and reverse transcription-PCR indicate the presence of five transcriptional units, two monocistronic and three polycistronic; one is internal to a larger operon. The site for transcription initiation has been determined for each promoter, and the putative promoter regions were identified. Preliminary results also indicate that the gene product of phtL is involved in the regulation of the synthesis of phaseolotoxin.


Assuntos
Família Multigênica , Ornitina/análogos & derivados , Pseudomonas syringae/genética , Sequência de Bases , Escherichia coli/genética , Biblioteca Genômica , Dados de Sequência Molecular , Mutagênese , Ornitina/genética , Ornitina Carbamoiltransferase/genética , Plasmídeos , Mapeamento por Restrição , Transcrição Gênica
10.
Proc Natl Acad Sci U S A ; 102(5): 1791-6, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15657122

RESUMO

Many pathogens are virulent because they specifically interfere with host defense responses and therefore can proliferate. Here, we report that virulent strains of the bacterial phytopathogen Pseudomonas syringae induce systemic susceptibility to secondary P. syringae infection in the host plant Arabidopsis thaliana. This systemic induced susceptibility (SIS) is in direct contrast to the well studied avirulence/R gene-dependent resistance response known as the hypersensitive response that elicits systemic acquired resistance. We show that P. syringae-elicited SIS is caused by the production of coronatine (COR), a pathogen-derived functional and structural mimic of the phytohormone jasmonic acid (JA). These data suggest that SIS may be a consequence of the previously described mutually antagonistic interaction between the salicylic acid and JA signaling pathways. Virulent P. syringae also has the potential to induce net systemic susceptibility to herbivory by an insect (Trichoplusia ni, cabbage looper), but this susceptibility is not caused by COR. Rather, consistent with its role as a JA mimic, COR induces systemic resistance to T. ni. These data highlight the complexity of defense signaling interactions among plants, pathogens, and herbivores.


Assuntos
Arabidopsis/microbiologia , Pseudomonas syringae/fisiologia , Animais , Arabidopsis/parasitologia , Suscetibilidade a Doenças , Insetos/parasitologia , Modelos Biológicos , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Pseudomonas syringae/patogenicidade , Virulência
11.
Mol Plant Microbe Interact ; 17(2): 162-74, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14964530

RESUMO

To identify Pseudomonas syringae pv. tomato genes involved in pathogenesis, we carried out a screen for Tn5 mutants of P. syringae pv. tomato DC3000 with reduced virulence on Arabidopsis thaliana. Several mutants defining both known and novel virulence loci were identified. Six mutants contained insertions in biosynthetic genes for the phytotoxin coronatine (COR). The P. syringae pv. tomato DC3000 COR genes are chromosomally encoded and are arranged in two separate clusters, which encode enzymes responsible for the synthesis of coronafacic acid (CFA) or coronamic acid (CMA), the two defined intermediates in COR biosynthesis. High-performance liquid chromatography fractionation and exogenous feeding studies confirmed that Tn5 insertions in the cfa and cma genes disrupt CFA and CMA biosynthesis, respectively. All six COR biosynthetic mutants were significantly impaired in their ability to multiply to high levels and to elicit disease symptoms on A. thaliana plants. To assess the relative contributions of CFA, CMA, and COR in virulence, we constructed and characterized cfa6 cmaA double mutant strains. These exhibited virulence phenotypes on A. thalliana identical to those observed for the cmaA or cfa6 single mutants, suggesting that reduced virulence of these mutants on A. thaliana is caused by the absence of the intact COR toxin. This is the first study to use biochemically and genetically defined COR mutants to address the role of COR in pathogenesis.


Assuntos
Aminoácidos/biossíntese , Aminoácidos/genética , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Cosmídeos/genética , Escherichia coli/genética , Indenos , Mutagênese Insercional , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Mapeamento por Restrição , Virulência
12.
Microbiology (Reading) ; 149(Pt 5): 1127-1138, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12724374

RESUMO

Pseudomonas syringae produces the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. Although alginate has been isolated from plants infected by P. syringae, the signals and timing of alginate gene expression in planta have not been described. In this study, an algD : : uidA transcriptional fusion, designated pDCalgDP, was constructed and used to monitor alginate gene expression in host and non-host plants inoculated with P. syringae pv. tomato DC3000. When leaves of susceptible collard plants were spray-inoculated with DC3000(pDCalgDP), algD was activated within 72 h post-inoculation (p.i.) and was associated with the development of water-soaked lesions. In leaves of the susceptible tomato cv. Rio Grande-PtoS, algD activity was lower than in collard and was not associated with water-soaking. The expression of algD was also monitored in leaves of tomato cv. Rio Grande-PtoR, which is resistant to P. syringae pv. tomato DC3000. Within 12 h p.i., a microscopic hypersensitive response (micro-HR) was observed in Rio Grande-PtoR leaves spray-inoculated with P. syringae pv. tomato DC3000(pDCalgDP). As the HR progressed, histochemical staining indicated that individual bacterial cells on the surface of resistant tomato leaves were expressing algD. These results indicate that algD is expressed in both susceptible (e.g. collard, tomato) and resistant (Rio Grande-PtoR) host plants. The expression of algD in an incompatible host-pathogen interaction was further explored by monitoring transcriptional activity in leaves of tobacco, which is not a host for P. syringae pv. tomato. In tobacco inoculated with DC3000(pDCalgDP), an HR was evident within 12 h p.i., and algD expression was evident within 8-12 h p.i. However, when tobacco was inoculated with an hrcC mutant of DC3000, the HR did not occur and algD expression was substantially lower. These results suggest that signals that precede the HR may stimulate alginate gene expression in P. syringae. Histochemical staining with nitro blue tetrazolium indicated that the superoxide anion () is a signal for algD activation in planta. This study indicates that algD is expressed when P. syringae attempts to colonize both susceptible and resistant plant hosts.


Assuntos
Alginatos/metabolismo , Brassica/microbiologia , Desidrogenases de Carboidrato/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas/genética , Solanum lycopersicum/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Superóxidos/metabolismo , Virulência
13.
DNA Seq ; 13(6): 343-51, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12652905

RESUMO

Some strains of Pseudomonas fluorescens produce the antibiotic mupirocin, which functions as a competitive inhibitor of isoleucyl-tRNA synthetase (ILERS). Mupirocin-producing strains of P. fluorescens must overcome the inhibitory effects of the antibiotic to avoid self-suicide. However, it is not clear how P. fluorescens protects itself from the toxic effects of mupirocin. In this report, we describe a second gene encoding isoleucyl-tRNA synthetase (rILERS) in P. fluorescens that is associated with the mupirocin biosynthetic gene cluster. Random mutagenesis of the mupirocin-producing strain, P. fluorescens 10586, resulted in a mupirocin-defective mutant disrupted in a region with similarity to ILERS, the target site for mupirocin. The ILERS gene described in the present study was sequenced and shown to be encoded by a 3093 bp ORF, which is 264 bp larger than the ILERS gene previously identified in P. fluorescens 10586. rILERS from P. fluorescens is most closely related to prokaryotic or eukaryotic sources of ILERS that are resistant to mupirocin. Interestingly, the relatedness between rILERS and the ILERS previously described in P. fluorescens 10586 was low (24% similarity), which indicates that P. fluorescens contains two isoforms of isoleucyl-tRNA synthetase.


Assuntos
Isoleucina-tRNA Ligase/genética , Mupirocina/biossíntese , Pseudomonas fluorescens/genética , Sequência de Aminoácidos , Sequência de Bases , Bioensaio , Isoleucina-tRNA Ligase/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Pseudomonas fluorescens/enzimologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...